
CROSSTALK The Journal of Defense Software Engineering 19January 1998

The lifecycle cost to maintain software can exceed
the costs to develop the original code. This is particu-
larly true for software systems that are expected to

continue in service for 20 to 30 years, in which maintenance
can account for 50 percent to 70 percent of the total lifecycle
costs for a software system. Of these maintenance costs, testing
can account for 50 percent or more of the costs [1]. Thus, the
cost to test modified code can be a substantial portion of the
total costs of keeping legacy code alive.

These factors hold true for Y2K fixes. To eliminate a
system’s Y2K problem requires that you identify what parts of
the software need modification, make the conversions, and test
the conversions. According to [4], more than 60 percent of all
Y2K costs will go to testing. This figure can be as high as 70
percent for some projects [5].

In a regular system’s lifecycle, the maintenance phase in-
volves two key activities: fixing faults in existing code and
adding new functionality to existing code. Y2K conversions
can be placed into either category, depending on your perspec-
tive and the age of the system. If you view Y2K problems as
fixing programmer mistakes, your fixes would be considered
fault eradication. (This makes sense if the systems were built
fairly recently.) If you view the Y2K problem as software that
outlived its intended lifespan, you view Y2K conversions as
adding functionality to aged systems. (This makes sense for
systems that incorporate code created many years ago.)

Regardless of how the Y2K issue is viewed, modified code
should be tested, and unmodified parts of the system should
be retested to ensure that each “fixed” system is Y2K immune.
As already stated, these testing expenses can be pricey. One
reason is that few testing tools are smart enough to automati-
cally know how to minimize testing costs for modified code.
However, you would think a “smart” tool could determine
exactly what code needed to be retested. It would be great if
such an automated tool existed to distinguish that kind of
code in a “optimized” mode, i.e., determine the least amount
of code that needed to be retested to demonstrate that a code
conversion was correct.

Unfortunately, no such tool exists. This suggests that there
is a serious need for tools that seamlessly integrate with Y2K
conversion tools and that test Y2K conversions. If such tools
existed, the total global cost of the Y2K problem could be

reduced while still providing sufficient confidence that Y2K
conversions were correct. This could add up to astronomical
savings, as the world-wide cost for fixes alone is $600 billion,
not to mention legal liability costs that could exceed $1 tril-
lion [2, 3].

Following is a description of what testing tools must ac-
complish under any scenario to provide the appropriate levels
of confidence. In short, it is something like a checklist of test-
ing processes that certify Y2K compliance.

Coverage Testing
The absolute minimal requirement is that modified code be
tested (commonly referred to as “exercised”). If modified code
is not exercised, it is not possible to know what its behavior
will be. To exercise code, generate test cases that execute the
conversions, then employ simple coverage analysis to analyze
whether modified statements are hit. This can be done easily if
• The conversion tool places comments in the converted

code.
• The coverage tool’s parser looks for those comments.
• The coverage tool then places instrumentation to record

when those statements are exercised.
Once coverage testing is successfully completed, you know that
all code modifications have been executed at least once.

But from a quality perspective, it is imperative to recognize
that it is barely sufficient to merely reach statements, because
there are other forms of coverage testing, e.g., dataflow, that are
better at fault detection than statement testing. For example,
dataflow testing would allow you to test “all uses” of the year
fields that were modified. Or if you attacked your Y2K prob-
lem by adding complex conditions, e.g., changing

if y1 < y2 then
years_apart = |y2 - y1|

to

if (((y1 < y2) and (y2 < 00)) or ((y1 >= 00) and (y2 >= 00))) then
years_apart = |y2 - y1|

else if (y1 <= 99) and (y2 >= 00) then
years_apart = (99 - y1 + 1) + (y2 - 00)

to avoid increasing the size of year fields, you should use a
coverage testing approach like multiple-condition coverage

Certifying Year 2000 “Fixes”
Jeffrey Voas

Reliable Software Technologies

There is much less talk about certifying the correctness of year 2000 (Y2K) con-
versions than there is about how to make the conversions. Certifying that Y2K
“fixes” were appropriate can be done easily by using a combination of different
software testing techniques. This article describes these techniques and why they
should be considered essential processes in any Y2K conversion solution.

20 CROSSTALK The Journal of Defense Software Engineering January 1998

(MCC) or condition-decision coverage
(C/DC). Note that dataflow, MCC,
and C/DC coverage testing are more
thorough than statement testing.

However, coverage testing is only one
ingredient in Y2K certification. After all,
even complete coverage testing of all
code modifications does not imply that
all Y2K conversions are correct. All fixes
could be correct, but the fixes may have
broken system functionality; that is, all
the year fields may now work properly,
but other functionality that used to
work now does not. (Such a situation
could occur because of a lurking fault
that could not be triggered until a year
greater than 1999 is used.)

This potential problem needs to be
mitigated by retesting existing function-
ality. To do so, regression testing can be
employed, which is the next ingredient
needed for Y2K certification.

Regression Testing
Regression testing employs a suite of test
cases (usually with respect to the require-
ments or specification) to ensure the
outputs from the original code and con-
verted code are identical for each mem-
ber of the suite. Note here that it is as-
sumed that for each member of the
suite, there should be identical behavior
for both versions of the code. Regression
testing provides evidence that the con-
versions have not affected any function-
ality that should have remained unaf-
fected.

System-Level Testing
But there will also be system-level inputs
that we would want to result in different
outputs (between the converted and
unconverted programs). If this were not
the case, why was the software con-
verted? To determine that the new ver-
sion is doing what you want for these
inputs, employ system-level testing,
which will employ test cases that repre-
sent events beyond 1999. System-level
testing will serve as our last ingredient in
Y2K certification.

It is important to note that system-
level testing is neither a substitute for
coverage testing nor does coverage test-

ing replace system-level testing. It is
possible to exercise all code conversions
and not discover that a conversion fails
in the context of a test that represents an
event after 1999. Likewise, it is possible
to system-level test with a wide variety of
post-1999 scenarios that do not exercise
all modifications. Thus, both forms of
testing are needed for Y2K certification.

Summary
To certify that code is Y2K compliant,
three different forms of testing should be
employed:
• Coverage testing to exercise fixes.
• Regression testing to see whether

new code breaks other system re-
quirements that are not related to
calendar dates.

• System-level test to see how the new
system handles events past 1999.
These techniques do not guarantee

that the conversions will integrate into
your system and work correctly under all
scenarios. Except for exhaustive testing,
testing can never make such guarantees.
Instead, testing provides confidence.
And for legacy Y2K systems, that is what
is needed after these “tried-and-true”
systems are upgraded to handle events
after 1999.

Since testing can account for 50
percent of maintenance costs, if you
were planning to spend X dollars on
conversion, the additional certification
costs could double your cost to 2X. But
without taking these defensive measures,
you could get fooled into thinking that
your Y2K problem is behind you when
it is not. Given that you have taken pro-
active measures to solve your Y2K prob-
lem, this is a situation you will want to
avoid.

I have deliberately simplified the
Y2K certification process down to a
handful of traditional testing ap-
proaches. Admittedly, there are more
advanced certification processes that
could be employed to provide similar
results. Given that much Y2K conver-
sion is ongoing without assurances that
the conversions are correct, it should be
more beneficial for practitioners to lay-
out the basic needs for Y2K certification

than to layout a Utopian “pipe dream,”
such as proving beyond all doubt that
the legacy system is correct. u

About the Author
Jeffrey Voas is a co-
founder of and chief
scientist for Reliable
Software Technologies
and is currently the
principal investigator on
research initiatives for

the Defense Advanced Research Projects
Agency and the National Institute of
Standards and Technology. He has pub-
lished over 85 refereed journal and confer-
ence papers. He co-wrote Software Assess-
ment: Reliability, Safety, Testability (John
Wiley & Sons, 1995) and Software Fault-
Injection: Inoculating Programs Against
Errors (John Wiley & Sons, 1997). His
current research interests include informa-
tion security metrics, software dependabil-
ity metrics, software liability and certifica-
tion, software safety and testing, and
information warfare tactics. He is a mem-
ber of the Institute of Electrical and Elec-
tronics Engineers and he holds a doctor-
ate in computer science from the College
of William & Mary.

Reliable Software Technologies
21515 Ridgetop Circle, Suite 250
Sterling, VA 20166
Voice: 703-404-9293
Fax: 703-404-9295
E-mail: jmvoas@rstcorp.com

References
1. Myers, G., The Art of Software Testing,

John Wiley & Sons, 1979.
2. “Year 2000 Prophet Preaches $600

Billion Digital Fix,” Computer News
Daily, Oct. 1, 1997.

3. Hassett, D., “Frequently Asked Ques-
tions About the Year 2000 Problem,”
available at http://www.y2k.com/
legalfaq.htm.

4. Tech-Beamers, “White Paper Year 2000
Focus On Testing,” May 10, 1996,
available at http://www1.mhv.net/
~techbmrs/tstgwp.htm.

5. Scheier, R. L., “Year 2000: Testing Can’t
Wait,” Computerworld, Oct. 20, 1997,
available at http://
www2.computerworld.com/home/
online9697.nsf/All/971020test.

Year 2000

